Bistable expression of WOR1, a master regulator of white-opaque switching in Candida albicans.
نویسندگان
چکیده
Candida albicans, a commensal organism and a pathogen of humans, can switch stochastically between a white phase and an opaque phase without an intermediate phase. The white and opaque phases have distinct cell shapes and gene expression programs. Once switched, each phase is stable for many cell divisions. White-opaque switching is under a1-alpha2 repression and therefore only happens in a or alpha cells. Mechanisms that control the switching are unknown. Here, we identify Wor1 (white-opaque regulator 1) as a master regulator of white-opaque switching. The deletion of WOR1 blocks opaque cell formation. The ectopic expression of WOR1 converts all cells to stable opaque cells in a or alpha cells. In addition, the ectopic expression of WOR1 in a/alpha cells is sufficient to induce opaque cell formation. Importantly, WOR1 expression displays an all-or-none pattern. It is undetectable in white cells, and it is highly expressed in opaque cells. The ectopic expression of Wor1 induces the transcription of WOR1 from the WOR1 locus, which correlates with the switch to opaque phase. We present genetic evidence for feedback regulation of WOR1 transcription. The feedback regulation explains the bistable and stochastic nature of white-opaque switching.
منابع مشابه
Interlocking Transcriptional Feedback Loops Control White-Opaque Switching in Candida albicans
The human pathogen Candida albicans can assume either of two distinct cell types, designated "white" and "opaque." Each cell type is maintained for many generations; switching between them is rare and stochastic, and occurs without any known changes in the nucleotide sequence of the genome. The two cell types differ dramatically in cell shape, colony appearance, mating competence, and virulence...
متن کاملEpigenetic properties of white-opaque switching in Candida albicans are based on a self-sustaining transcriptional feedback loop.
White-opaque switching in the human fungal pathogen Candida albicans is an alternation between two distinct types of cells, white and opaque. White and opaque cells differ in their appearance under the microscope, the genes they express, their mating behaviors, and the host tissues for which they are best suited. Each state is heritable for many generations, and switching between states occurs ...
متن کاملWor1 establishes opaque cell fate through inhibition of the general co-repressor Tup1 in Candida albicans
The pathogenic fungus Candida albicans can undergo phenotypic switching between two heritable states: white and opaque. This phenotypic plasticity facilitates its colonization in distinct host niches. The master regulator WOR1 is exclusively expressed in opaque phase cells. Positive feedback regulation by Wor1 on the WOR1 promoter is essential for opaque formation, however the underlying mechan...
متن کاملMTL–Independent Phenotypic Switching in Candida tropicalis and a Dual Role for Wor1 in Regulating Switching and Filamentation
Phenotypic switching allows for rapid transitions between alternative cell states and is important in pathogenic fungi for colonization and infection of different host niches. In Candida albicans, the white-opaque phenotypic switch plays a central role in regulating the program of sexual mating as well as interactions with the mammalian host. White-opaque switching is controlled by genes encode...
متن کاملThe WOR 1 5′ untranslated region regulates white‐opaque switching in C andida albicans by reducing translational efficiency
The human fungal pathogen Candida albicans undergoes white-opaque phenotypic switching, which enhances its adaptation to host niches. Switching is controlled by a transcriptional regulatory network of interlocking feedback loops acting on the transcription of WOR1, the master regulator of white-opaque switching, but regulation of the network on the translational level is not yet explored. Here,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 34 شماره
صفحات -
تاریخ انتشار 2006